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Introduction

Charged particle stopping power in HYDRA is composed of three terms arising from (i) free electrons, (ii)
bound electrons, and (iii) ions. Each of these terms has a corresponding Coulomb logarithm denoted by Le,
Lb, and Li, respectively, and these are given formally by the equations
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The resulting total stopping power is then
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where
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is the free electron Coulomb logarithm in the limit that the projectile speed vp is much less than the
characteristic electron speed ve: i.e. f ≡ (vp/ve) ≪ 1.

The free electron stopping power has been derived using the random phase approximation (RPA) with
an empirical fit used to bridge the gap between the Fermi and Boltzmann limits[2], bound electron stopping
is simply the Bethe-Bloch form, and the ion Coulomb stopping power is the form used by many including
Li and Petrasso[1] in the limit that the projectile speed far surpasses the background ion thermal speed.

Heretofore, most of parameters have been left undefined, and the remainder of this section will strive
to develop practical definitions for each with engineering (numerical) formulae whenever possible. Before
diving into that, however, a brief comment on notation is in order. Throughout this document — unless
otherwise noted — subscript “p” will denote a variable associated with the projectile that is slowing down,
“e” refers to free electrons, “b” to bound electrons, and “i” to background ions. In practice, background
ions are typically amalgamated using an appropriate average so that only a single ion species is considered.
This “average species” is denoted by subscript “α.”

In addition, m denotes mass, mklr denotes reduced mass for species k and l, n number density, Z charge
state, E energy, v speed, ω angular frequency, T electron temperature in keV, e = 4.8032 × 10−10 statC is
the charge of an electron, kB = 1.602176487 × 10−9 erg

keV is Boltzmann’s constant, u = 1.66054 × 10−24 g
AMU ,

h = 2π~ = 6.6260692851436918 × 10−27 erg · s is Planck’s constant, and all units are CGS unless noted.

Defining the Details

Stopping By Free Electrons

The free electron Coulomb logarithm is modeled after that derived by Maynard and Deutsch using the
random phase approximation with a Padé approximant fit in f used to account for the temperature effects
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described in the reference. The fit bridges the gap between the calculated low and high temperature limits
and is defined such that

F (f) =
0.321 + 0.259f2 + 0.0707f4 + 0.05f6

1 + 0.130f2 + 0.0500f4

where f ≡ (vp/ve) as stated above.
In addition to this fit, electron time and speed scales appear within this formulation. The time scale is

simply the electron plasma response time here expressed in terms of the Langmuir frequency
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The speed scale is the thermal electron speed, but since plasma conditions within an ICF capsule may be
Fermi degenerate, a Boltzmann description is not sufficient.

Characteristic Electron Speed: ve

The desired Fermi thermal speed can be simply expressed by the compact expression
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~π1/2

me
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1/3
, (1)

where η is the chemical potential of the system normalized to the electron temperature. With the electron
number density and temperature specified, this speed is, in principle, known since the chemical potential
depends only on these properties. Practically speaking, however, the chemical potential is not easily expressed
in closed form and must be either approximated or computed numerically. In this case, a functional fit is
chosen to make this calculation practical for the enormous number of stopping power computations required
in modeling a full scale ICF target.

Begin with the standard distribution for a non-relativistic Fermi (electron) gas
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where N is the number of particles, g is the spin degeneracy parameter — 2 for an electron — V is the system
volume, and pj is the jth-direction momentum component associated with a normalized energy ǫ = E/T .
Thus, the overall number density is
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where F1/2(η) has been implicitly defined as the Fermi integral of order 1/2.
By rearranging this expression, the parameter ξ can be defined such that
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where the numerator of the third term has been noted to be equal to the Fermi energy, EF , which is the
highest energy occupied state for this density at a temperature of absolute zero. The newly defined parameter
ξ can be expressed using the simple engineering formula
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and with this parameter defined, the normalized chemical potential can now be fit to facilitate computing
the thermal speed such that:

1

1 + exp (−η)
≈ 1 − e−ζ0 (2)

ζ0 =
(.7531 + ξ(.1679 + .3108ξ)) ∗ ξ3

1. + ξ(.2676 + ξ(.2280 + .3099ξ))
.
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The Fermi degeneracy corrected electron thermal speed is then given by the engineering formula
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. (3)

for arbitrary values of the normalized chemical potential, η.
Before leaving this topic, consider the non-degenerate limit: i.e. as η → −∞. In that case, the Fermi

integral can be carried out analytically
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Using this form in the original expression for the electron thermal speed given in Eq. 1 results in
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which is, of course, the classical Boltzmann thermal speed.
Alternatively, if the high temperature, low density non-degenerate limit is taken in Eq. 1 by employing

the Padé approximant of Eqs. 2 and letting ξ tend to zero,
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which is, of course, essentially the value obtained in Eq. 4 since 0.7531≈ 4/(3π1/2) thereby demonstrating
that the Padé approximant for the chemical potential does, indeed, reduce to the Maxwell Boltzmann limit.

Casting the Coulomb Logarithm Argument in Terms of Characteristic Lengths

The argument to the free electron Coulomb logarithm may be cast in terms of the more traditional ratio of
maximum to minimum distances of interaction squared by noting that
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is the quantum distance of closest approach to an electron: that is, the electron thermal deBroglie wavelength
under the approximation that the electron reduced mass is equal to the true electron mass.

The factor of
√

2 in Eq. 6 is included to ensure that the electron speed and temperature are correctly
related by mev

2
e = 2kBTe in the Maxwell-Boltzmann limit as shown in Eqs. 4 and 5.

Stopping By Bound Electrons

The bound electron Coulomb logarithm is simply the Bethe-Bloch equation with I equal to the average
ionization potential of the material, which can be approximated as

I [erg] = kBZi
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√
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 ,

where Z∗ is the number of free electrons per nucleus in the background material, and as above, Zi is the
number of protons per nucleus.
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Stopping By Ions

The ion Coulomb logarithm, Li, follows the typical model of depending on the ratio of the maximum to
minimum impact parameters:
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The maximum impact parameter is taken to be the electron Debye length as Coulomb effects are screened
beyond this distance. Specifically, the Debye length λDe can be expressed
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The square of the minimum approach distance is taken as the sum of the squares of the classical distance of
closest approach λCA — the square bracketed term in Eq. 7 — and the deBroglie wavelength of the system
λQi — the term in parentheses below in Eq. 7:
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where vcrit represents a characteristic speed described below.
The characteristic speed, vcrit is defined as the speed of the projectile under the condition that the

electron and ion stopping powers are equal. To facilitate this calculation, the stopping power formulae are
simplified somewhat and the contribution from bound electrons is neglected. The typical limit vi ≪ vp ≪ ve

is taken to simplify the resulting expressions for the free election and ion stopping powers yielding
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When these stopping powers are equal, this ratio is 1, and vcrit can be determined:
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where Ap is the projectile mass in AMU, and Boltzmann’s constant has been introduced during this step
to emphasize that T will be given in keV and Ep in ergs. Assuming a Deuterium background as typical for
ICF applications and noting that

log (Λi)
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∼ 1.545,

the proportionality constant relating Ep/Ap to T is 12.43kB , and thus,
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Using this characteristic speed, the square of the resulting minimum impact parameter can then be written
directly as
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and, finally, the ion Coulomb logarithm can be written
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for a Deuterium plasma. Currently, all simulations assume that the ratio Ep/Ap = 12.43kBT regardless of
the plasma conditions or constituents. In a typical ICF environment, this is generally not far from reality,
and in fact, this seems to make little difference even for plasmas very dissimilar to this in test cases run to
date. This restriction could be relaxed.
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